
NCO based CDR Documentation
Release 0.0.1

Filippo Marini

Aug 23, 2021

NCO based CDR Documentation

I IEEE RT2020 Submission 1

1 Abstract 2

2 Introduction 3

3 Numerically Controlled Oscillator 4
3.1 Phase resolution increase . 5

4 Phase (Frequency) Detector 6
4.1 Practical implementation . 6

5 Conclusions 9

II Code Documentation 10

6 Top level 11

7 Numerically Controlled Oscillator 14

8 Frequency Manager 17

9 Phase and Frequency Detector 19
9.1 Phase Shift Filter . 20
9.2 Quadrant Detector . 21

10 Phase and Frequency Detector Manager 24
10.1 Lock Manager . 24

11 Phase Aligner 27

12 CDR Frequency Library 28
12.1 Freq_to_m . 28
12.2 Freq_to_mmcm . 28

13 Test Benches 29

i

Part I

IEEE RT2020 Submission

1

CHAPTER 1

Abstract

The capability to extract timing informations out of a serial data stream to decode the incoming informations has
become a very common requirement.
To sample the incoming data, the receiver usually relies on a Clock and Data Recovery (CDR) chip, which generates
a clock signal at the corresponding sampling frequency, phase-aligned to the data.

Modern physics experiment have often this same requirement, where perhaps thousands of boards receive uncorrelated
data and it’s up to them to decode the messages. For that reason, the presence of a CDR on-board is usually mandatory.

Present readout systems in physics experiments usually rely on FPGAs to receive and transmit data at high rate to high
capaicity DAQ systems; exploting FPGAs to recover timing information from streamed data is therefore beneficial for
a number of reasons, including power consumption and cost reduction.

The design is based on two components: a Numerically-Controlled Oscillator (NCO), in order to create a controlled
frequency clock signal, and a digital Phase Detector (PD) to match the clock frequency with the data rate.
NCOs are often coupled with a Digital to Analog Converter (DAC) to create Direct Digital Synthesizers (DDS),
which are able to produce analog waveforms of any desired frequency. In the presented case, the NCO generates a
digital clock signal of an arbitrary frequence, while the PD manages this frequency by intercepting any shifting on the
relative phase between the clock and the data.

The paper presents the implemented CDR design, the limitations and the challenges involved, possible fields of appli-
cation in actual physics experiments and, finally, some results.

2

CHAPTER 2

Introduction

The Clock and Data Recovery job is a relatively simple one: retrieve a clock with the frequency needed to sample
each bit of the incoming data stream.
Its design, unfortunately, is not so trivial.

Usually a CDR architecture is similar to the Phase Locked Loop (PLL) model (Fig. 2.1), where the phase of a
reference signal is compared to the phase of an adjustable feedback signal, generally provided by a Voltage
Controlled Oscillator (VCO). The output of the Phase Detector (PD) is filtered and used to pilot the VCO frequency.
When the phase comparison is in steady state, e.g. the phase and frequency of the reference signal is equal to the
phase and frequency of the feeedback signal, we say that the PLL is locked.
In the case of a CDR, the steady state is reached when the VCO clock frequency match the reference signal’s data
rate.

Fig. 2.1: Basic design of a PLL.

Essentially, breaking down the design, for a fully functional CDR, a controlled oscillator and a PD are needed.

This paper has the intent to show a possible implementation of a CDR. .. adopting the FPGA technology, in particular
the target is a Xilinx Kintex 7 (XC7K325T–2FFG900C), which presents a good balance between performances and
cost. In particular the target is a Xilinx Kintex 7 (XC7K325T-2FFG900C). The design is intended to work with a
range of data rates that allows the use of the high range (HR) general purpose I/O pin of the FPGA over the dedicated
tranceivers, resulting in a reduced power consumption and a more straightforward design.

3

CHAPTER 3

Numerically Controlled Oscillator

To generate a waveform, the VCO is substituted by a Numerically Controlled Oscillator (NCO)1. Its design consists
of two parts:

• A phase accumulator (PA), which is basically a counter incremented by a reference clock

• A phase-to-amplitude converter, which uses the PA output as an index to a Look-Up Table (LUT)

To better understand the mechanism, we can think of a phase-wheel (Fig. 3.1). This phase-wheel is equally divided in
a certain number of sections, bounded by phase-points (a.k.a. the PA output) and for each phase-point we associate
the correspondant sine value (a.k.a. the LUT).

As a vector rotates around the wheel, by taking these sine values, a digital sine waveform is generated. A complete
revolution around the phase-circle corresponds to a complete period of the sine wave.

Let’s imagine now that the vector skips a few (fixed) points for each jump, the revolution is completed in a much
shorter time: the frequency of the output waveform has increased!

The correlation between the jump size, the reference clock and the output waveform frequency is

𝑓𝑂𝑈𝑇 = 𝑀×𝑓𝐶
2𝑛

where:

• 𝑀 is the jump size

• 𝑓𝑂𝑈𝑇 is the NCO output waveform frequency

• 𝑓𝐶 in the reference clock frequency

• 𝑛 is the length of the phase accumulator, in bits

1 https://www.analog.com/en/analog-dialogue/articles/all-about-direct-digital-synthesis.html

4

https://www.analog.com/en/analog-dialogue/articles/all-about-direct-digital-synthesis.html

NCO based CDR Documentation, Release 0.0.1

Fig. 3.1: The phase wheel

To retrieve a digital clock signal, the LUT is actually very simple: we just associate to half of the circle the digital
value 0, and to the other half the digital value 1.

The design presents two main limitations:

• The first is the maximum frequency limit, which is given by Nyquist, and corresponds to half of the reference
clock

• The second is the phase resolution. Since the output signal is digital, the time domain is discrete, and it corre-
sponds to the reference clock period. This implies that the positive (and negative) fraction of the output clock
signal can only be a multiple of this time domain resolution, making the output frequency only on average
determined by the jump size of the accumulator.

While the first limitation is known and impossible to overcome, the second is design based, and must be resolved in
order to be able to use this clock for CDR operations.

3.1 Phase resolution increase

As said, the NCO output can change its value only when the phase accumulator jumps from one phase-point to
another (i.e. at the rising edge of the reference clock).
To improve the phase resolution, the parallelism capability of the FPGA is exploited.

Briefly, to reduce the NCO phase changing period, the trivial way is to increase the reference clock frequency.
To obtain the same result, without any frequency change, we can compute multiple points between one phase jump,
and then serialize the results. This way, for each rising edge of the reference clock, multiple values of the output
waveform are computed, increasing the resolution.

The NCO output clock will still present differences between the average frequency value and the istantaneous fre-
quency value (the time domain is still descrete, we just reduced its period), but this can be filtered out feeding the
signal to an FPGA’s MMCM/PLL, in jitter filter mode.

3.1. Phase resolution increase 5

CHAPTER 4

Phase (Frequency) Detector

To mimic the PLL architecture for the CDR, a phase/frequency detector is needed, in order to compare the NCO output
clock frequency to the data rate.

To detect a frequency difference, the transition of the data signal shall be compared with the transition of two clocks
of equal frequency that have a constant phase difference.

Denoting with 𝑓𝑑 the data frequency and with 𝑓𝑉 𝐶𝑂 the clock frequency, we have that:

𝑓𝑑 = (𝜑𝑑(𝑡1)− 𝜑𝑑(𝑡0))/(𝑡1 − 𝑡0)

𝑓𝑉 𝐶𝑂 = (𝜑𝑉 𝐶𝑂(𝑡1)− 𝜑𝑉 𝐶𝑂(𝑡0))/(𝑡1 − 𝑡0)

where 𝜑𝑑(𝑡) and 𝜑𝑉 𝐶𝑂(𝑡) represents the data and clock phase respectively at the time 𝑡.
Let’s keep in mind that the time 𝑡1 and 𝑡0 are given by the NCO clock, as the only time based signal.

The frequency difference is then given by:

𝑓𝑑 − 𝑓𝑉 𝐶𝑂 = [(𝜑𝑑(𝑡1)− 𝜑𝑉 𝐶𝑂(𝑡1))− (𝜑𝑑(𝑡0)− 𝜑𝑉 𝐶𝑂(𝑡0))]/(𝑡1 − 𝑡0)

The two phase differences in the numerator at the righ hand side of the equation are the output of the phase detector,
comparing the data transition with the NCO clock transition at the instances 𝑡1 and 𝑡0.
These phase differences will vary with time (in case of frequency offset), making a frequency difference detection
possible.

4.1 Practical implementation

By using two clocks with 50% duty cycle and orthogonal with each-other (𝜋/2 of phase difference), it is possible to
divide the entire 360 degrees clock period into four quandrants, as shown in Fig. 4.1 .

6

NCO based CDR Documentation, Release 0.0.1

The two phase detector (one for each clock) indicate the quandrants where the data signal transition is located,
updating this information at every new data edge.

If the data phase is shifting with respect to the clock edges, than the clock quadrant that detects the data transition will
increase or decrease, accordingly to the phase shifting direction.

In the implemented design, the frequency detection capability relies on the use of two clock signals, with 50% duty
cycle and orthoghonal with each-other. These two signals allows the division of a clock period into four quadrants
(see Fig. 4.1).

To identify the quadrant of the data edges, informations by two Alexander-type phase detectors (Fig. 4.2) are registered
and processed. Further processing is needed to determine whether the data edges are drifting up or down in the clock
quandrants (due to higher or lower clock frequency) to consistenly adjust the NCO frequency. These frequency change
requests to the NCO are constantly monitored in order to control CDR locked flag.

Informations on the phase and frequency detection techniques whose this design is based from, can be found here2.

Fig. 4.1: The division of the clock period in four equal qudrants (indicated by the Roman numerals). 𝐼𝐶𝐿𝐾 stands
for In-phase Clock, which is the reference, 𝑄𝐶𝐿𝐾 stands for Quadrature Clock, which idetifies the +𝜋/2 (or −𝜋/2)
phase difference clock. To idetify a quandrant, an Early (E) and Late (L) notation (Clk vs Data) is used. If a data
transition is first located in quadrant III and then in quadrant II, the data phase is shifting to the left, which equals that
the data transitions are based on a clock faster than the NCO clock.

2 https://en.wikibooks.org/wiki/Clock_and_Data_Recovery

4.1. Practical implementation 7

https://en.wikibooks.org/wiki/Clock_and_Data_Recovery

NCO based CDR Documentation, Release 0.0.1

Fig. 4.2: The bang-bang PD compares the negative edge of the clock with the data transition, and the present data bit
with the previous data bit. Using 4 flip flops the resulting info is contemporarily available for one entire clock period.
The output T is active when a data transition is detected, the output E is active when the clock has been found early.

4.1. Practical implementation 8

CHAPTER 5

Conclusions

The presented document briefly prensents the design for an FPGA implementation of a fully figital CDR.

The design is intended has proven to work with rates up to 250 Mbps. At such data rate, a possible implementation
would be on the Global Control Unit (GCU) board of the JUNO experiment.

JUNO is a neutrino physics experiment, under development, where a big liquid scintillator detector will be read by
about 20’000 large PMTs. Very close to the PMTs, underwater, the analogue signals are digitized, analyzed and
stored in the GCU’s FPGA.
Each GCU looks at three PMTs and, elaborating their data, a primitive trigger is generated. The trigger is then sent to
the higher lever electronics, via a synchronous link, for a global trigger validation. In case the validation is positive,
the same link is used to send back its timestamp. When received, the GCU sends the related waveform to the DAQ
via Ethernet.

A CDR is needed to decode the synchronous link messages, which presents a data rate of 125 Mbps. This would be
beneficial in terms of cost reduction.

9

Part II

Code Documentation

10

CHAPTER 6

Top level

file: top_cdr_fpga.vhd

The file top_cdr_fpga.vhd is the top level file for the CDR project.

For an easier code comprehension it is recommended to have the CDR documentation and code on the side.

The generic and ports used by the CDR design are:

• g_gen_vio: boolean, when “true” the Xilinx VIO is generated, whose ports are used to make the NCO generate
a fixed clock frequency (M_i) and to enable the phase and frequency detector (vio_DMTD_en)

• g_check_jc_clock: boolean, when “true” the recovered clock is forwarded out to the differential pin cdr-
clk_jc_p/n_o

• g_check_pd: boolean, when “true” some internal signals are forwarded out from the FPGA in order to be
checked (with an oscilloscope for istance). Used for debug purposes.

• g_number_of_bits: positive, this defines the number of bits used by the NCO’s phase wheel. The number of bits
determine the NCO’s output frequency resolution

• g_multiplication_factor: positive number which is needed to have an output frequency higher than the maximum
obtainable frequency of the single phase wheel (due to Nyquist law). The user only need to make sure that
𝑔_𝑓𝑟𝑒𝑞_𝑜𝑢𝑡/2𝑔_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑓𝑎𝑐𝑡𝑜𝑟−1 < 𝑔_𝑓𝑟𝑒𝑞_𝑖𝑛/2

• g_freq_in: real, system clock frequency (i.e., the frequency of the clock that enters the i_phase_wheel_counter_1
instance), in MHz

• g_freq_out: real, NCO nominal output frequency (i.e., the data rate), in MHz

• g_out_phase: recovered cloc - data phase relationship

• sysclk_p/n_i: clock from the board crystal

• data_to_rec_i: data from which the clock is recovered

11

NCO based CDR Documentation, Release 0.0.1

Fig. 6.1: Block level for the CDR proposed project

12

NCO based CDR Documentation, Release 0.0.1

• cdrclk_p/n_o: NCO’s generated clock which has gone through the OSERDESE2 tile and need an external
loopback

• cdrclk_p/n_i: clock is going back in from the loopback

• cdrclk_jc_p/n_o: if enabled, this differential pins shows the recovered clock

• ledx_o: several LED showing whether the MMCM are locked, if data is entering the FPGA and if the NCO’s
clock is actually present

• shifting_o, shifting_en_o: debug ports

On the report, a block diagram of the CDR design is reported. The corresponding istances in the top level code are:

• Numerically Controlled Oscillator <=> i_phase_wheel_counter_1

• Frequency Manager <=> i_frequency_manager_1

• SerDes <=> i_oserdese_manager_1

• Mixed-Mode Clock Manager <=> i_jitter_cleaner_1, i_i_q_cloc_gen_1

• Phase and Frequency Detector <=> i_pfd_1

• Phase and Frequency Detector Manager <=> i_pfd_manager_1, i_lock_manager_1

• Phase Aligner <=> i_phase_detector_unit_1

Some of these istances will have its code explained here.

Other notable istances are: i_slow_pulse_counter which is used to show a defined LED pulse based on data rate,
PRBS_ANY_1 which is a PRBS checker, i_prbs_counter_1 which is a counter of PRBS errors.

13

CHAPTER 7

Numerically Controlled Oscillator

Instance: i_phase_wheel_counter_1, file: phase_wheel_counter.vhd

The code is actually pretty simple. The phase wheel (Fig. 7.2) is actually a counter (s_phase_wheel_counter) which
gets incremented by a fixed quantity, the jump size (u_M).

To improve the phase resolution, 8 phase wheels counters are generated and each one presents an offset of (jump
size)/8 (refer to paper at chapter The Serdes Technique), so that, for example, if the jump size is 16, the offset would
be 2, and if counter_1 is at 32, counter_2 would equal 34, counter_3 equals 36, counter_4 equals 38 and so on up to
counter_8 with the value of 46.
The next clock clycle counter_1 will be at 48 and the others will still follow the same offset rule

The “LUT” (which is not really a LUT) which generates the clock signal from the counter is represented by the last
line. Essentially you just take one bit of the counter, and these will oscillate between 0 and 1 with 50% duty cycle.
Fig. 7.3 of the paper shows you an example of why 8 different clocks (2 in the figure) increase the phase resolution.
For visual reason the wave in the paper is a sine wave, but the principle is the same with a digital wave.

In this module a grain and fine clock frequency selection is allowed. The grain selection is carried out during the
extraction of the clock from the counter. The LSB oscillate faster than the MSB. The fine selection is performed by
the jump_size (M_i port) which is what is used to match the NCO clock frequency with the data rate.

14

NCO based CDR Documentation, Release 0.0.1

Fig. 7.1: Block diagram for the phase_wheel_counter component

Fig. 7.2: The phase wheel. The equation on the left shows how to retrieve the out frequency starting from 𝑀 , the jump
size, 𝑓𝐶 , the system clock and 𝑁 , the number of bits used by the vector s_phase_wheel_counter (total - bit chosen for
the clock)

15

NCO based CDR Documentation, Release 0.0.1

Fig. 7.3: example of phase resolution improvement by serialing different phase-wheel

16

CHAPTER 8

Frequency Manager

Instance: i_frequency_manager_1, file: frequency_manager.vhd

This module takes the frequency change requests in input and change the NCO jump size accordingly.

Fig. 8.1: Block diagram for the frequency_manager component

To take into account the clock domain crossing of the change frequency requests (source is the cdr clock while the
destination is the system clock), to the enable and increase freuqency signals (which are the signals actually used to
know whether to increase or decrease the NCO frequency), a third signal has been added, the control. As can be seen
by Fig. 8.2, a single requests lasts for a few clock cycles, to make sure they (especially the control signal) stay up for
more than two destion clock periods.

17

NCO based CDR Documentation, Release 0.0.1

Fig. 8.2: Frequency chage requests timing diagram.

18

CHAPTER 9

Phase and Frequency Detector

Instance: i_pfd_1, file: pfd.vhd

In this section we are going to analyze the vhd files used to compare the NCO clock frequency with the data rate.

As explained in the documentation, the frequency matching is basen on dividing the whole clock period in 4 quadrants,
and monitoring in which quandrant the data present its edges. If the quadrant of the data edges changes onver time,
the clock frequency does not match the data rate. In particular if the data edges quadrant is shifting up, the NCO clock
is faster, while if the data edges are costantly moving towards a lower quandrants, the NCO clock frequency is slower.

The quadrant detection capability relies on the use of two Alexander type bang bang phase detector (Fig. 9.1), one
working with a so-called “in-phase clk” (clk_i_i) and the other with a “quadrature clock” (clk_q_i), featuring a pi/2
phase difference.

Fig. 9.1: Alexander-type Bang-Bang phase detector

The Early/Late signals of the phase detectors are filtered by the phase_shift_filter Master/Slave couple modules. The
filtering is explained in the dedicated section.

19

NCO based CDR Documentation, Release 0.0.1

The filtered Early/Late signals are monitoried by the quadrant_detector module which dinamically determines the
current quadrant of the data edges. The shifting of quadrants is given by the quadrant_shifting_detector module.

9.1 Phase Shift Filter

Instance: i_phase_shift_filter_slave_1, i_phase_shift_filter_slave_2, file: phase_shift_filter_slave.vhd Instance:
i_phase_shift_filter_master_1, file: phase_shift_filter_master.vhd

The phase_shift_filter_master/slave are components used to filter the raw up/down data-to-clock phase by the phase
detectors in order to get rid of possible errors caused by jitter and bad sampling due to flip-flop setup/hold violations.

The mechanism of the filtering is very trivial: the master gives the slaves a user-defined time window in which the
slaves counts the raw phase up or down flags. When the master window goes to 0, the slaves look at their counter
and, based on a defined threshold, decide whether te data-to-clock phase is actually up or down.
Regarding the master, the length of the filtering window is 2𝑔_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠. Concerning the slaves, the minimum data
transition in order to take a decision is 2𝑔_𝑛𝑢𝑚_𝑡𝑟𝑎𝑛𝑠_𝑚𝑖𝑛, while the threshold for the counter to take a decision is half
of the registered number of data transitions.

The phase_up/down output is stretched for a configured number of steps (usually 3) for Clock Domain Crossing (CDC)
reasons.

In order fo the slaves to take a decision, a minimum of data edges must be present (data must be AC balanced).

Fig. 9.2: Block diagram for the phase_shift_filter_master

9.1. Phase Shift Filter 20

NCO based CDR Documentation, Release 0.0.1

Fig. 9.3: Block diagram for the phase_shift_filter_slave

9.2 Quadrant Detector

Instance: i_quadrant_detector_1, file: quadrant_detector.vhd Instance: i_quadrant_shifter_detector_1, file: quad-
rant_shifting_detector.vhd

The quadrant_detector module detects in which clock quadrant the data has its edges. To do so, it processes the
informations passed on by the phase_shift_filter_slave modules.

The quadrant information is ten used by the quadrant_shifting_detector module in order to monitor the shifting of the
data edges quadrant to dictate whether the clock frequency is faster or slower than the data rate.

To understand how the quadrants are identified, please refer to Fig. 9.4

Fig. 9.4: Quadrants definitions based on early/late data-to-clock phase.

The concept behind how the modules work is not really difficult. Please look at the source VHDL code and look at

9.2. Quadrant Detector 21

NCO based CDR Documentation, Release 0.0.1

the following figures for an easier comprehension.

Fig. 9.5: Block diagram for the quadrant_detector

To avoid any mis-shifting-detection going from the idle state to the next states, the quadrant_shifting_detector module
presents a set-reset flip-flop which enables the shifting identification only when at least one quadrant was already
identified.

The locked_o port of the quadrant_shifter_detector module can be though as a primordial CDR lock flag, but in the
code this is actually not used and the locked flag comes from the lock_manager module.

9.2. Quadrant Detector 22

NCO based CDR Documentation, Release 0.0.1

Fig. 9.6: Block diagram for the quadrant_shifting_detector

9.2. Quadrant Detector 23

CHAPTER 10

Phase and Frequency Detector Manager

Instance: i_pfd_manager_1, file: pfd_manager.vhd

The frequency manager module’s job is to make sure the NCO clock freuqency is as close as possible to the data rate.
Since its impossible for the two to be an exact match, due to the finite resolution of the clock frequency and real-world
conditions (i.e., jitter, setup/hold time violation . . .), the Frequency Manager exploits a counter filtering method
(similar to the phase_shift_filter module) with several different threshold to get to the closest wanted frequency. Also,
when this condition is met, the locked_o flag is asserted high and will be deasserted if the input data stops or the data
rate mismatches the NCO clock frequency.

As said, the counter mechanism (+1 when frequency increase request, -1 when frequency decrease request) employs
different threshold in order to detect whether the CDR is locked:

• lock threshold (around 10% of the maximum possible value): if counter ends up inside this range, the CDR is
locked

• activate threshold (around 50%) when CDR is locked, outside this range a frequency change request is for-
warded to te NCO

• unlock threshold (around 90%) if exceeded, the CDR locked is deasserted

A Set/Reset Flip-Flop manages the lock and unlock flags.

Together with the M-change requests, a control signal is sent out, to comply with the CDC that will happen when
passing this signal to the NCO.

10.1 Lock Manager

Instance: i_lock_manager_1, file: lock_manager.vhd

The lock_manager module monitors the locked_o signal from the Frequency Manager to decide whether the CDR is
locked to the data or not.

Basically, if the locked_o stays up for a certain number of periods, than the CDR is locked. On the other hand, if
locked_o stays low for the same certain number of period, than the CDR is not locked.

Watch out for aliases!!

24

NCO based CDR Documentation, Release 0.0.1

Fig. 10.1: Block diagram for the pfd_manager module

Fig. 10.2: Timing diagram for the M-change request to be passed to the NCO

10.1. Lock Manager 25

NCO based CDR Documentation, Release 0.0.1

Fig. 10.3: Block diagram for the lock manager module

10.1. Lock Manager 26

CHAPTER 11

Phase Aligner

Instance: i_phase_detector_unit_1, file: phase_detector_unit.vhd

The phase_detector_unit instance is needed to have a very well defined phase relationship between the recovered clock
and the incoming data stream. Moreover, since the frequency detector is not able to perfectly match the NCO clock
with the data rate, the recovered clock will never stop drifting. This dynamic phase adjustment fixes this issue.

The phase_detector_unit module consists of three parts. Since these are very similar to the “Phase Shift Filter”
components, no block diagrams are shown. Please refer to that chapter to easily understand the VHDL code. The
differences will be listed in the following.

• i_phase_detector_1 is an Alexander-type Bang-Bang phase dector

• i_phase_shift_filter is very similar to the phase_shift_filter_slave component. The difference is that here there is
no master, as we don’t need to compare two different phase detection streams. The filtering window is therefore
generated directly inside the module, using the bit_num_trans_time generic for lenght definition.

• i_ps_controller_1 is an MMCM dynamic phase adjustment signal controller. Since the “Phase Detector”
has to communicate with the MMCME_2_ADV tile, the phase_up and phase_down flags generated by the
i_phase_shift_filter intance must comply with the MMCM phase adjustment protocol. This is what the
ps_controller achieves.

27

CHAPTER 12

CDR Frequency Library

The freq_utils package include two functions that are used by the top level project file.

12.1 Freq_to_m

The freq_to_m function is used in order to transform the g_freq_out top level generic into a jump size value for the
NCO.

The function’s inputs are:

• The system clock frequency, given by the g_freq_in top level generic, real

• The NCO expected nominal frequency, given by the g_freq_out top level generic, real

• The multiplication factor, given by the g_multiplication_factor top level generic, positive

• The NCO number of bits, given by the g_number_of_bits top level generic, positive

The function’s declaration is freq_to_m(g_freq_in, g_freq_out, g_multiplication_factor, g_number_of_bits) and re-
turns a real

12.2 Freq_to_mmcm

The freq_to_mmcm function is used by the MMCM to generate the clkfbout_mult_f and clkin1_period generics in
order to keep the VCO frequency at 1 GHz

The function’s input is:

• The NCO expected nominal frequency, given by the g_freq_out top level generic, real

The function’s declaration is freq_to_mmmc(g_freq_out) and returns a real

28

CHAPTER 13

Test Benches

Included in the “src” folder, several test benches are available to test different modules of the project. The test files are
distinguishable from the syntesizable files as they are contained in folders ending with the “_tb” suffix.

The test are ment to be run with GHDL software (Tested with GHDL 0.37-dev, llvm version).

In order to generate the test bench executionable file, run the “Makefile” with the “make” command.
Remember to dump the wave file, as there is no automatic test or assertion.

For the GHDL user guide on how to run a test bench, dump the wave file and define its time lenght, refer to1.

1 https://ghdl.readthedocs.io/en/latest/

29

https://ghdl.readthedocs.io/en/latest/

	I IEEE RT2020 Submission
	Abstract
	Introduction
	Numerically Controlled Oscillator
	Phase resolution increase

	Phase (Frequency) Detector
	Practical implementation

	Conclusions

	II Code Documentation
	Top level
	Numerically Controlled Oscillator
	Frequency Manager
	Phase and Frequency Detector
	Phase Shift Filter
	Quadrant Detector

	Phase and Frequency Detector Manager
	Lock Manager

	Phase Aligner
	CDR Frequency Library
	Freq_to_m
	Freq_to_mmcm

	Test Benches

